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Going Backwards 
How to invert GF2 Matrices 
 
 
    In this peculiar process where shift  registers are feed from their right lsb with Kj unity vectors 
with its unique nonzero component located at its rightmost bit, the C*K product of any order is 
reduced to the XORing of last column of C matrices by Kj vectors. The algebra of states 
transition will take the form: 

 
Si(9) = Ci(1)^8*Si(0) + Ci(1)^8*K1 + Ci(1)^7*K2 + ……. + Ci(1)^1*K8 + K9 

  
Si(9) = C(i)^8*Si(0) + XOR of MiK(0=>9) row vectors  

Si(9) = MiK(0=>9)XOR 
 
Where the matrices MiK(0=>9) (with corresponding K bits diffused in it) , corresponding to 
traversing from states 0 to 9 are built with as many rows as the path to traverse (9 states  9 
rows) having the following structure: 

 
Row 1  C1(8)  [0  k1  0  k1] 
Row 2  C1(7)  [k2 0   k2  0] 
Row 3  C1(6)  [k3 k3  0 k3] 
Row 4  C1(5)  [0  k4  k4  0] 
Row 5  C1(4)  [0  0   k5 k5] 
Row 6  C1(3)  [k6 0   0  k6] 
Row 7  C1(2)  [0  k7  0   0] 
Row 8  C1(1)  [0  0   k8  0] 
Row 9  C1(0)  [0  0   0  k9] 

 
 

    As we see Mi matrices are very easy to generate provided we have pre computed all the Ci’s 
transition matrices. As we are going to generalize soon this procedure could be applied to non 
zero initial states and for any traverse.  

 
For register R1 the nine steps Mi is as follows:  

0 1 0 1 
0 0 0 0 
1 1 0 1 
0 1 1 0 
0 0 0 0 
1 0 0 1 
0 1 0 0 
0 0 0 0 
0 0 0 1 
0 0 1 0 

 
And XOR is even simpler because key bit equal to 0 eliminate the corresponding row. The XOR 
of the six non zero binary vectors give us the resulting state Si(9) = [0 0 1 0] 
    Let’s see the procedure when initial states are non zero. For instance how to “jump” directly 
from state S1(4) = [1 0 1 0] to the same S1(9) throughout a direct jump of 5 steps.  

 
S1(9) = C1(5)*S1(4) + M1(5=>9)(XOR) 

 
M1(4=>9) 

 
0 0 1 1   k5=0 
1 0 0 1   k6=1 
0 1 0 0   k7=1 
0 0 1 0   k8=0 
0 0 0 1   k9=1 
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1 1 0 0 that XORed with the regular transition (in absence of K) from S1(4) to S1(9) via 
C1(5)*S1(4)  that gives us 1 1 1 0 it reproduces S1(9) = (1 1 0 0) XOR ( 1 1 1 0) = (0 0  1 0) 
 
    Algebraically we may define states as: 
 

(1)  Si(a) = C1(b-a)*Si(b) + M1(a=>b)XK(a=>b) 
 
Where the operation X stands for XOR bitwise between M1(a=>) XORed versus K(a=>b), being 
K(a=>b) a K bits vector that circularly goes from a=>b. Concerning A5/1 matrices Mi that go 
from Si(0) to Si(64) have the following dimensions:  
 

M1(0 =>64): 64x19 
M2(0 =>64): 64x22 
M3(0 =>64): 64x23 

 
And Mi matrices coefficients are formed with Ci matrices last columns from Ci(1) to Ci(64). Our 
problem is how we may go backwards algebraically. Going forward is trivial as we have 
demonstrated applying (1), in A5/1:  
 

S1(64) = C1(64)*S1(0) + M1(1=>64)XK 
S2(64) = C2(64)*S2(0) + M2(1=>64)XK 
S3(64) = C3(64)*S3(0) + M3(1=>64)XK 

 
As A5/1 proceed to make all Si(0) equal to zero in this mixing with K, expressions simplify to 
 

Si(64) = Mi(1=>64)XK 
 
Returning to our example we have:  
 

M1(1=>9)XK 
 

C1(8) last column: 0101  K1 
C1(7) last column: 1010  K2 
C1(6) last column: 1101  K3 
C1(5) last column: 0110  K4 
C1(4) last column: 0011  K5 
C1(3) last column: 1001  K6 
C1(2) last column: 0100  K7 
C1(1) last column: 0010  K8 
C1(0) last column: 0001  K9 

 
Result: 0010 

 
That represents the following set of 4 equations:  
 

k2 + k3 + k6 = 0 = S1(9) (3)  bit 3 msb 
k1 + k3 + k4 +k7 = 0 = S1(9) (2)  bit 2 
k2 + k4 + k5 + k8 = 1 = S1(9) (1)  bit 1 

k1 + k3 + k5 + k6 + k9 = 0 = S1(9) (0)  bit 0 
 
And for next register we get 
 

M2(1=>9)XK 
 

C2(8) last column: 010  K1 
C2(7) last column: 101  K2 
C2(6) last column: 011  K3 
C2(5) last column: 111  K4 
C2(4) last column: 110  K5 
C2(3) last column: 100  K6 
C2(2) last column: 101  K7 
C2(1) last column: 010  K8 
C2(0) last column: 001  K9 

 
 
 



 
Giving place to the following set of equations:  
 

k2 + k4 + k5 + k6 + k7 = 1 = S2(9) (2)  bit 2 msb 
k1 + k3 + k4 + k5 + k8 = 1 = S2(9) (1)  bit 1 
k2 + k3 + k4 + k7 + k9 = 0 = S2(9) (0)  bit 0 

 
And for last register R3 we get 
 

M3(1=>9)XK 
 

C3(8) last column: 11  K1 
C3(7) last column: 10  K2 
C3(6) last column: 01  K3 
C3(5) last column: 11  K4 
C3(4) last column: 10  K5 
C3(3) last column: 01  K6 
C3(2) last column: 11  K7 
C3(1) last column: 10  K8 
C3(0) last column: 01  K9 

 
Giving place to the following set of equations:  
 

k1 + k2 + k4 + k5 + k7 + k8 = 1 = S3(9) (1)  bit 1 msb 
k1 + k3 + k4 + k6 + k7 + k9 = 0 = S3(9) (0)  bit 0 

 
S1(9) (3)  0 1 1 0 0 1 0 0 0   k1 

S1(9) (2)  1 0 1 1 0 0 1 0 0     k2 
S1(9) (1)  0 1 0 1 1 0 0 1 0     k3 
S1(9) (0)  1 0 1 0 1 1 0 0 1     k4 

 
S2(9) (2)  0 1 0 1 1 1 1 0 0     k5 
S2(9) (1)  1 0 1 1 1 0 0 1 0     k6 
S2(9) (0)  0 1 1 1 0 0 1 0 1     k7 

 
S3(9) (1)  1 1 0 1 1 0 1 1 0     k8 
S3(9) (0)  1 0 1 1 0 1 1 0 1     k9 

 
    This is then the final expression that given K generates at the end of the “K mixing process”: 
M*K = S(9), and in the general case:  
 

M*K = S 
 
For the ciphering run and consequently its inversion: 
 

M´S = K 
 
Retrieve the private keyword from a S(64) state, being M´ the inverse matrix of M. 
 

k2 + k3 + k6 = 0 
k1 + k3 + k4 +k7 = 0 
k2 + k4 + k5 + k8 = 1 

k1 + k3 + k5 + k6 + k9 = 0 
k2 + k4 + k5 + k6 + k7 = 1 
k1 + k3 + k4 + k5 + k8 = 1 
k2 + k3 + k4 + k7 + k9 = 0 

9k1 + k2 + k4 + k5 + k7 + k8 = 1 
k1 + k3 + k4 + k6 + k7 + k9 = 0 

 
Eq 9: k9= k1 + k3 + k4 + k6 + k7 

 
k2 + k3 + k6 = 0 

k1 + k3 + k4 +k7 = 0 
k2 + k4 + k5 + k8 = 1 

k1 + k3 + k5 + k6 + 0 + k1 + k3 + k4 + k6 + k7 = 0 = k4 + k5 + k7 
k2 + k4 + k5 + k6 + k7 = 1 
k1 + k3 + k4 + k5 + k8 = 1 

k2 + k3 + k4 + k7 + 0 + k1 + k3 + k4 + k6 + k7 = 0 = k1 + k2 + k6 
k1 + k2 + k4 + k5 + k7 + k8 = 1 

 



 
k2 + k3 + k6 = 0 

k1 + k3 + k4 +k7 = 0 
k2 + k4 + k5 + k8 = 12 

k4 + k5 + k7 = 0 
k2 + k4 + k5 + k6 + k7 = 1 
k1 + k3 + k4 + k5 + k8 = 1 

k1 + k2 + k6 = 0 
k1 + k2 + k4 + k5 + k7 + k8 = 1 

 
Eq. 8: k8 = 1 + k1 + k2 + k4 + k5 + k7 

 
k2 + k3 + k6 = 0 

k1 + k3 + k4 +k7 = 0 
k2 + k4 + k5 + 1 + k1 + k2 + k4 + k5 + k7 = 1 => k1 + k7 = 0 

k4 + k5 + k7 = 0 
k2 + k4 + k5 + k6 + k7 = 1 

k1 + k3 + k4 + k5 + 1 + k1 + k2 + k4 + k5 + k7 = 1 => k2 + k3 + k7 = 0 
k1 + k2 + k6 = 0 

 
k2 + k3 + k6 = 0 

k1 + k3 + k4 +k7 = 0 
k1 + k7 = 0 

k4 + k5 + k7 = 0 
k2 + k4 + k5 + k6 + k7 = 1 

k2 + k3 + k7 = 0 
k1 + k2 + k6 = 0 

 
Eq. 7: k7 = k2 + k3 

 
k2+ k3 + k6 = 0 

k1 + k3 + k4 + k2 + k3 = 0 => k1 + k2 + k4 = 0 
k1 + k2 + k3 = 0 => k1 + k2 + k3 

k4 + k5 + k2 + k3 = 0 => k2 + k3 + k4 + k5 = 0 
k2 + k4 + k5 + k6 + k2 + k3 = 1 => k2 + k3 + k4 + k5 + k6= 1 

k1 + k2 + k6 = 0 
 

k2+ k3 + k6 = 0 
k1 + k2 + k4 = 0 
k1 + k2 + k3 = 0 

k2 + k3 + k4 + k5 = 0 
k2 + k3 + k4 + k5 + k6= 1 

k1 + k2 + k6 = 0 
 

Eq. 6: k6 = k1 + k2 
 

k2+ k3 + k1 + k2 = 0 => k1 + k3 = 0 
k1 + k2 + k4 = 0 
k1 + k2 + k3 = 0 

k2 + k3 + k4 + k5 = 0 
k2 + k3 + k4 + k5 + k1 + k2= 1 => k1 + k3 + k4 + k5  = 1 

 
k1 + k3 = 0 

k1 + k2 + k4 = 0 
k1 + k2 + k3 = 0 

k2 + k3 + k4 + k5 = 0 
k1 + k3 + k4 + k5  = 1 

 
Eq. 5: k5 = 1 + k1 + k3 + k4 

 
0k1 + k3 = 0 

k1 + k2 + k4 = 0 
k1 + k2 + k3 = 0 

k2 + k3 + k4 + 1 + k1 + k3 + k4 = 0 => k1 + k2 = 1 
 

k1 + k3 = 0 
k1 + k2 + k4 = 0 
k1 + k2 + k3 = 0 

k1 + k2 = 1 
 

Eq. 4: k4 = k1 + k2 
 
 



 
k1 + k3 = 0 

k1 + k2 + k3 = 0 
k1 + k2 = 1 

 
Eq. 3: k3 = k1 

 
k1 + k2 + k1 = 0 => k2 = 0 

k1 + k2 = 1 
 

k2 = 0 
k1 + k2 = 1 

 
Eq. 2: k2 = 0 

 
k1 = 1 

Eq. 1: k1 = 1 
 
Now going backwards 
 

k1 = 1 
k2 = 0 
k3 = k1 = 1 
k4 = k1 + k2 = 1 + 0 = 1 
k5 = 1 + k1 + k3 + k4 = 1 + 1 + 1 + 1 = 0 
k6 = k1 + k2 = 1 + 0 = 1 
k7 = k2 + k3 = 0 + 1 = 1 
k8 = 1 + k1 + k2 + k4 + k5 + k7 = 1 + 1 + 0 + 1 + 0 + 1 = 0 
k9 = 0 + k1 + k3 + k4 + k6 + k7 = 0 + 1 + 1 + 1 + 1 + 1 = 1 

 
K(9) = M´*S(9) = [1 0 1 1 0 1 1 0 1] 

 
    The procedure is straightforward like in the conventional Gauss Jordan method, by 
eliminating a variable at a time and once we get k1 going “forward“ we may proceed “backwards 
to solve k2 by using the (n-1) equation between k1 and k2, and then k3 using the (n-2) equation 
between k1, k2 and k3, and so on and so forth to get kn. To have a general procedure we may 
compute n times this replacement algorithm for a matrix US of n “Unity States”:  
 
 
 

US1 = [1 0 0 ……………0] 
US2 = [0 1 0 ……………0] 
US3 = [0 0 1 ……………0] 
…………………………….. 
USn = [0 0 0 ……………1] 

 
Pseudo Gauss-Jordan XOR Algorithm => US => M´ 

 
Appendices 
A) something about the XOR matrix logic 
 
    Let’s see how we should deal with the classical algebra operations aOb where the Operator 
symbol O stands for product (.), division (/), addition (+), subtraction (-) respectively.  
 
a + b = c has the following outcomes: 
 
 
 

a b c 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
 
 



 
a – b = c bound to a = b + c, using the same table 
 

a b c 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
    That property simplifies transformations to leave variable alone equations, for example: 
 

a + b + c + d = 1 
a = 1 + b + c + d, 

 
Because subtracting b, c, or d is performed by adding these terms at each side of the equation: 
equals cancel each other: a + (b + b) + (c + c) + (d + d) = 1 + b + c + d => a + 0 + 0 + 0 = 1 + b 
+ c + d.  
 
    Multiplication does not present any problem. Normally operations are performed via the 
regular binary arithmetic operator (.):  
 

. 0 1 
0 0 0 
1 0 1 

 
Let’s see what happens with / operation defined as follows: 
 
a/b = c,  bound to a = b.c 
 

a b c 
0 0 0 
0 1 0 
1 0 ? 
1 1 1 

 
We may appreciate here the ambiguity in 0/0 and 0/1 that gives the same result and the 
undefined 1/0 operation.  
 
 
B) A5/1 Characteristic Matrices Generation 
 
     Now that we have solved the whole problem: how to get the Private Keyword once arrived to 
the state S(-22) via matrices we have to generate the first powers of the basic transition matrix 
for the three registers R1, R2 and R3. These basic matrices are:  
 

C1(1) 
[0100000000000000000] 
[0010000000000000000] 
[0001000000000000000] 
[0000100000000000000] 
…………………………… 
[0000000000000000010] 
[0000000000000000001] 
[1110010000000000000] 

 
C2(1) 

[0100000000000000000000] 
[0010000000000000000000] 
[0001000000000000000000] 
[0000100000000000000000] 
…..…………………………… 
[0000000000000000000010] 
[0000000000000000000001] 
[1100000000000000000000] 

 
 



 
C3(1) 

[01000000000000000000000] 
[00100000000000000000000] 
[00010000000000000000000] 
[00001000000000000000000] 
………………………………… 
[00000000000000000000010] 
[00000000000000000000001] 
[11100000000000010000000] 

 
And for these basic matrices we have to perform their 64 powers, from Ci(1) to Ci(1)^64. With 
their last columns we proceed to build the M matrices that have to be inverted.  
 
Warning: We need then to program two routines, namely: Matrix Multiplication between them 
and with a vector and Matrix Inversion.  
 
 
C) Binary Matrix Inversion Sample check 
 
    The algorithm resembles the classical Gauss Jordan algorithm adapted to GF2. It deals  with 
matrices of order m that are expanded within a mx2m order array where the first subspace of 
mxm order is occupied by the matrix to be inverted and the second of same order is virtually 
occupied by a Unit Matrix.  
 
 

Iter 1 Before => Alter 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
0 0 0 1 0   0 0 1 0 0   0 0 0 1 0   0 0 1 0 0 
0 0 0 0 1   0 0 0 1 0   0 0 0 0 1   0 0 0 1 0 
1 1 0 0 0   0 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 2 Before => Alter 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
0 0 0 1 0   0 0 1 0 0   0 0 0 1 0   0 0 1 0 0 
0 0 0 0 1   0 0 0 1 0   0 0 0 0 1   0 0 0 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 3 Before => Alter 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
0 0 0 1 0   0 0 1 0 0   0 0 0 1 0   0 0 1 0 0 
0 0 0 0 1   0 0 0 1 0   0 0 0 0 1   0 0 0 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 4 Before => After 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
0 0 0 1 0   0 0 1 0 0   0 0 0 1 0   0 0 1 0 0 
0 0 0 0 1   0 0 0 1 0   0 0 0 0 1   0 0 0 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 5 Before => After 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
0 0 0 1 0   0 0 1 0 0   0 0 0 1 0   0 0 1 0 0 
0 0 0 0 1   0 0 0 1 0   0 0 0 0 1   0 0 0 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

 
Pivotal Sequence: 23451 

Inverse: 
 

1 0 0 0 1 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 

 
Iter 1 Before => Alter 

0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 



0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
1 1 0 1 0   0 0 1 0 0   1 1 0 1 0   1 0 1 0 0 
0 0 0 1 1   0 0 0 1 0   0 0 0 1 1   0 0 0 1 0 
1 1 0 0 0   0 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 2 Before => After 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
1 1 0 1 0   1 0 1 0 0   1 1 0 1 0   1 0 1 0 0 
0 0 0 1 1   0 0 0 1 0   0 0 0 1 1   0 0 0 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 3 Before => After 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
1 1 0 1 0   1 0 1 0 0   1 1 0 1 0   1 0 1 0 0 
0 0 0 1 1   0 0 0 1 0   1 1 0 1 1   1 0 1 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 4 Before => After 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
1 1 0 1 0   1 0 1 0 0   1 1 0 1 0   1 0 1 0 0 
1 1 0 1 1   1 0 1 1 0   1 1 0 1 1   1 0 1 1 0 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

Iter 5 Before => After 
0 1 0 0 0   1 0 0 0 0   0 1 0 0 0   1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0   0 0 1 0 0   0 1 0 0 0 
1 1 0 1 0   1 0 1 0 0   1 0 0 1 0   0 0 1 0 1 
1 1 0 1 1   1 0 1 1 0   1 0 0 0 1   0 0 1 1 1 
1 1 0 0 0   1 0 0 0 1   1 1 0 0 0   1 0 0 0 1 

 
Pivotal Sequence: 23451 

Inverse: 
 

1 0 0 0 1 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 1 
0 0 1 1 1 

 
    As appreciated the procedure is very simple. Once the pivotal column is selected only rows 
with their corresponding elements to that column are non zero are processed. At their turn in 
each row are only processed those elements whose headers at pivotal row level are also non 
zero.  
 
Warning: Most of these matrices are sparse and accordingly we may design fast scripts pointing from non zero to non 
zero elements once mapped.  


